Markers of conjugated octadecatrienoic acids in Raman spectra of vegetable oils: diagnostics of punicic and α-eleostearic acids

Cover Page

Cite item

Full Text

Open Access Open Access
Restricted Access Access granted
Restricted Access Subscription Access

Abstract

It is shown for the first time that using the method of Raman spectroscopy allows one to determine the content of conjugated octadecatrienoic (K-C18:3) acids in oil at their content of 8 wt. % at least. It is found that it is possible to reliably distinguish the isomers of the K-C18:3 acids containing conjugated (in punicic and α-eleostearic acids) and non-conjugated (in α-linolenic acid) C=C bonds by their Raman spectra. The obtained results can be used to develop efficient and non-destructive techniques for analyzing the composition and quality of oils, which contain conjugated octadecatrienic polyunsaturated fatty acids, and dietary supplements based on them.

Full Text

Restricted Access

About the authors

S. M. Kuznetsov

Prokhorov General Physics Institute of the Russian Academy of Sciences

Email: sagitova@kapella.gpi.ru
Russian Federation, Moscow

V. S. Novikov

Prokhorov General Physics Institute of the Russian Academy of Sciences

Email: sagitova@kapella.gpi.ru
Russian Federation, Moscow

G. Yu. Nikolaeva

Prokhorov General Physics Institute of the Russian Academy of Sciences

Email: sagitova@kapella.gpi.ru
Russian Federation, Moscow

M. N. Moskovskiy

Federal Scientific Agroengineering Center VIM

Email: sagitova@kapella.gpi.ru
Russian Federation, Moscow

P. K. Laptinskaya

Prokhorov General Physics Institute of the Russian Academy of Sciences

Email: sagitova@kapella.gpi.ru
Russian Federation, Moscow

E. A. Sagitova

Prokhorov General Physics Institute of the Russian Academy of Sciences

Author for correspondence.
Email: sagitova@kapella.gpi.ru
Russian Federation, Moscow

References

  1. Новрузов Э.Н., Зейналова А.М. Биологическая активность и терапевтическое действие гранатового масла // Растительные ресурсы. 2019. Т. 55. № 2. С. 186–194. https://doi.org/10.1134/s0033994619020080
  2. Schönemann A., Edwards H. G.M. Raman and FTIR microspectroscopic study of the alteration of Chinese tung oil and related drying oils during ageing // Anal. Bioanal. Chem. 2011. V. 400. № 4. P. 1173–1180. https://doi.org/10.1007/s00216-011-4855-0
  3. Тунговое масло [Electronic resource] // Большая советская энциклопедия. URL: https://dic.academic.ru/dic.nsf/bse/141675.
  4. Górnaś P., Rudzińska M., Raczyk M., Mišina I., Soliven A., Segliņa D. Composition of bioactive compounds in kernel oils recovered from sour cherry (Prunus cerasus L.) by-products: Impact of the cultivar on potential applications // Ind. Crops Prod. 2016. V. 82. P. 44–50. https://doi.org/10.1016/j.indcrop.2015.12.010
  5. Дейнека Л.А., Дейнека В.И., Сорокопудов В.Н., Шевченко С.М. Масла с конъюгированными двойными связями: масла косточек вишен и родственных родов семейства Rosaceae // Научные ведомости Белгородского государственного университета. Серия Естественные науки. 2010. Т. 21. № 92. С. 135–142.
  6. Cheikhyoussef N., Kandawa-schulz M., Böck R., Cheikhyoussef A. Mongongo/Manketti (Schinziophyton rautanenii) oil // Fruit Oils Chem. Funct. 2019. P. 627–640. https://doi.org/10.1007/978-3-030-12473-1_32
  7. ГОСТ 30623-2018. Масла растительные и продукты со смешанным составом жировой фазы. Метод обнаружения фальсификации. М.: Стандартинформ, 2018. 32 p.
  8. Дейнкеа В.И., Нгуен В.А., Дейнека Л.А. Особенности пробоподготовки при анализе масла с радикалами жирных кислот, содержащих сопряженные двойные связи: масло мормордики кохинхинской // Заводская лаборатория. Диагностика материалов. 2018. Т. 84. № 2. С. 18–23.
  9. Munnier E., Al Assaad A., David S., Mahut F., Vayer M., Van Gheluwe L., Yvergnaux F., Sinturel C., Soucé M., Chourpa I., Bonnier F. Homogeneous distribution of fatty ester-based active cosmetic ingredients in hydrophilic thin films by means of nanodispersion // Int. J. Cosmet. Sci. 2020. V. 42. № 5. P. 512–519. https://doi.org/10.1111/ics.12652
  10. Cleary M.P. Punicic acid is an ω-5 fatty acid capable of inhibiting breast cancer proliferation // Int. J. Oncol. 2009. V. 36. № 2. P. 547–557. https://doi.org/10.3892/ijo_00000515
  11. Boroushaki M.T., Mollazadeh H., Afshari A.R. Pomegranate seed oil: a comprehensive review on its therapeutic effects // Int. J. Pharm. Sci. Res. 2016. V. 7. № 2. https://doi.org/10.13040/IJPSR.0975-8232.7(2).430-42
  12. Галеев Р.Р. Современный подход к организации контроля качества лекарственных средств, находящихся в обращении на территории Российской Федерации // Вестник Росздравнадзора. 2017. Т. 2. С. 41–43.
  13. El-Abassy R.M., Donfack P., Materny A. Assessment of conventional and microwave heating induced degradation of carotenoids in olive oil by VIS Raman spectroscopy and classical methods // Food Res. Int. 2010. V. 43. № 3. P. 694–700. https://doi.org/10.1016/j.foodres.2009.10.021
  14. Vargas Jentzsch P., Ciobotă V. Raman spectroscopy as an analytical tool for analysis of vegetable and essential oils // Flavour Fragr. J. 2014. V. 29. № 5. P. 287–295. https://doi.org/10.1002/ffj.3203
  15. De Géa Neves M., Poppi R.J. Monitoring of adulteration and purity in coconut oil using Raman spectroscopy and multivariate curve resolution // Food Anal. Methods. Food Analytical Methods, 2018. V. 11. № 7. P. 1897–1905. https://doi.org/10.1007/s12161-017-1093-x
  16. Васимов Д.Д., Ашихмин А.А., Большаков М.А., Московский М.Н., Гудков С.В., Яныкин Д.В., Новиков В.С. Новые маркеры для определения химического и изомерного состава каротиноидов методом спектроскопии комбинационного рассеяния // Доклады РАН. Физика, технические науки. 2023. Т. 514. № 1. С. 10–17. https://doi.org/10.31857/S2686740023060147
  17. Schaffer H.E., Chance R.R., Silbey R.J., Knoll K., Schrock R.R. Conjugation length dependence of Raman scattering in a series of linear polyenes: Implications for polyacetylene // J. Chem. Phys. 1991. V. 94. № 6. P. 4161–4170. https://doi.org/10.1063/1.460649
  18. Новиков В.С., Кузнецов С.М., Кузьмин В.В., Прохоров К.А., Сагитова Е.А., Дарвин М.Е., Ладеманн Ю., Устынюк Л.Ю., Николаева Г.Ю. Анализ природных и синтетических соединений, содержащих полиеновые цепи, методом спектроскопии комбинационного рассеяния // Доклады РАН. Физика, технические науки. 2021. Т. 500. № 1. С. 26–33. https://doi.org/10.31857/s2686740021050060
  19. Zhuang Y., Ren Z., Jiang L., Zhang J., Wang H., Zhang G. Raman and FTIR spectroscopic studies on two hydroxylated tung oils (HTO) bearing conjugated double bonds // Spectrochim. Acta – Pt A. Mol. Biomol. Spectrosc. Elsevier B. V., 2018. V. 199. P. 146–152. https://doi.org/10.1016/j.saa.2018.03.020
  20. Tang T., Sui Z., Fei B. The microstructure of Moso bamboo (Phyllostachys heterocycla) with tung oil thermal treatment // IAWA J. 2022. V. 43. № 3. P. 322–336. https://doi.org/10.1163/22941932-bja10083
  21. Ako H., Kong N., Brown A. Fatty acid profiles of kukui nut oils over time and from different sources // Ind. Crops Prod. 2005. V. 22. № 2. P. 169–174. https://doi.org/10.1016/j.indcrop.2004.07.003
  22. Kuznetsov S.M., Novikov V.S., Sagitova E.A., Ustynyuk L.Y., Glikin A.A., Prokhorov K.A., Nikolaeva G.Y., Pashinin P.P. Raman spectra of n-pentane, n-hexane, and n-octadecane: Experimental and density functional theory (DFT) study // Laser Phys. 2019. V. 29. № 8. P. 085701. https://doi.org/10.1088/1555-6611/ab2908
  23. Peng H., Hou H.-Y., Chena X.-B. DFT calculation and Raman spectroscopy studies of α-linolenic acid // Quim. Nova. 2021. V. 44. № 8. P. 929–935. https://doi.org/10.21577/0100-4042.20170749
  24. Кузнецов С.М., Лаптинская П.К., Персидская О.К., Новиков В.С. Анализ растительных масел методом спектроскопии КР: определение содержания ненасыщенных жирных кислот и каротиноидов // Шестая ежегодная Школа-конференция молодых ученых “Прохоровские недели”, 24–26 октября 2023 г. Сб. тезисов. М., 2023. С. 163–165. https://doi.org/10.24412/cl-35673-2023-1-163-165
  25. El-Abassy R.M., Donfack P., Materny A. Visible Raman spectroscopy for the discrimination of olive oils from different vegetable oils and the detection of adulteration // J. Raman Spectrosc. 2009. V. 40. № 9. P. 1284–1289. https://doi.org/10.1002/jrs.2279

Supplementary files

Supplementary Files
Action
1. JATS XML
2. Fig. 1. Structural formulas (C18H30O2) of mutually isomeric punicic, α-eleostearic and α-linolenic acids. Molecular structures were calculated using density functional theory (DFT, see Materials and Methods). Carbon-carbon double bonds are shown in green.

Download (52KB)
3. Fig. 2. Simulated Raman spectra of punicic, α-eleostearic and α-linolenic acids and the experimental Raman spectrum of the Omega-5 dietary supplement.

Download (44KB)
4. Fig. 3. Raman spectra of vegetable oils in the range of 600–1800 cm–1: blue and red curves are the spectra of samples containing punicic and α-eleostearic (K-C18:3) PUFA, respectively; black curves are oils that do not contain K-C18:3 PUFA.

Download (109KB)
5. Fig. 4. Raman spectra of the studied vegetable oils and Omega-5 dietary supplements in the regions of (a) 2650–3200 cm–1 and (b) 2985–3075 cm–1. Blue and red curves are the spectra of samples containing punicic and α-eleostearic acids, respectively; black curves are oils that lack K-C18:3 PUFA.

Download (90KB)

Copyright (c) 2025 Russian Academy of Sciences