Development of the principle for the actual state of a physical system

Cover Page

Cite item

Full Text

Open Access Open Access
Restricted Access Access granted
Restricted Access Subscription or Fee Access

Abstract

The energy principle for the actual state of a physical system with distributed parameters is formulated using the example of problems formulations in linear theories, fluid, and thermal conductivity. It is shown that if the system state variables are chosen in appropriate way, all the considered problems of mathematical physics are reduced to one universal formulation. This description of the system makes it possible not only to evaluate the quality of approximate solutions, but also to estimate the perfection of the mathematical model used.

Full Text

Restricted Access

About the authors

B. V. Gusev

Russian University of Transport (MIIT)

Author for correspondence.
Email: info-rae@mail.ru

Corresponding Member of the RAS

 

Russian Federation, Moscow

V. V. Saurin

bIshlinsky Institute for Problems in Mechanics of the Russian Academy of Sciences

Email: saurin@ipmnet.ru
Russian Federation, Moscow

References

  1. Kostin G.V., Saurin V.V. Integrodifferential relations in linear elasticity. Berlin: De Gruyter, 2012. 280 p.
  2. Гусев Б.В., Саурин В.В. Подходы и принципы математического моделирования в строительной механике // Промышленное и гражданское строительство. 2023. № 11. С. 86–90.
  3. Гусев Б.В., Саурин В.В. Идеи двойственности в математическом моделировании // Сборник статей XIV Международного научного форума «Перспективные задачи инженерной науки» (Россия, Москва, 17 мая 2023 года) / Международная инженерная академия. М.: ООО «Инженерный центр «Импульс», РГУ им. А.Н. Косыгина, 2023. С. 77–84.
  4. Aschemann H., Kostin G.V. et al. Multivariable trajectory tracking control for a heated rod based on an integro-differential approach to control-oriented modeling 2016 21st International Conference on Methods and Models in Automation and Robotics (MMAR), Miedzyzdroje, Poland, 2016. P. 680–685. https://doi.org/10.1109/MMAR.2016.7575218
  5. Wang X., Yue X. et al. Applications of the Local Variational Iteration Method in Structural Dynamics // Computational Methods for Nonlinear Dynamical Systems. Elsevier, 2023. P. 199–225. https://doi.org/10.1016/B978-0-323-99113-1.00008-X
  6. Babuska I. Courant element: before and after // Finite Element Methods: Fifty Years of the Courant Element / Eds. M. Krizek, P. Neittaanmaki, R. Stenberg. Boca Raton: CRC Press, 1994. P. 37–51. (Lecture Notes in Pure and Applied Mathematics. V. 164).
  7. Bathe K.-J., Wilson E.L. Numerical Methods in Finite Element Analysis. Englewood Cliffs: Prentice-Hall, 1976. 528 p.
  8. Ciarlet Ph.G. The Finite Element Method for Elliptic Problems. Amsterdam: North-Holland, 1978. 529 p.
  9. Belytschko T., Liu W.K. et al. Nonlinear Finite Elements for Continua and Structures. 2nd ed. Wiley, 2014.
  10. Courant R. Variational methods for the solution of problem of equilibrium and vibration // Bulletin of American Mathematical Society. 1943. V. 49. P. 1–23.
  11. He J.H. Generalized variational principles for thermopiezoelectricity // Archive of Applied Mechanics. 2002. V. 72. № 4–5. P. 248–256.
  12. He J.H. A family of variational principles for linear micromorphic elasticity // Computer and Structures. 2003. V. 81. Iss. 21. P. 2079–2085.
  13. Kienzler R. On consistent plate theories // Archive of Applied Mechanics. 2002. V. 72. № 4–5. P. 229–247.
  14. Kwon K.C., Park S.H., Jiang B.N., Youn S.K. The least-squares meshfree method for solving linear elastic problems // Computational Mechanics. 2003. V. 30. № 3. P. 196–211.
  15. Oden J.T. Finite elements: an introduction // Handbook of Numerical Analysis. V. 2: Finite Element Methods (Part 1). / Eds. P. G. Ciarlet, J. L. Lions. Amsterdam: North-Holland, 1991. P. 3–15.
  16. Strouboulis T., Babuska I., Gangaraj S.K., Copps K., Datta D.K. A posteriori estimation of the error in the error estimate // Computer Methods in Applied Mechanics and Engineering. 1999. V. 176. № 1. P. 387–418.
  17. Washizu K. Variational methods in elasticity and plasticity. Oxford: Pergamon Press, 1982. 630 p.
  18. Zienkiewicz O.C. The finite element in engineering science. London: McGrau Hill, 1971. 521 p.
  19. Curtain R., Zwart H. An Introduction to Infinite-dimensional Linear Systems Theory. N.Y.: Springer, 1995.
  20. Atluri S.N., Zhu T. A new meshless local Petrov–Galerkin (MLPG) approach in computational mechanics // Computational Mechanics. 1998. V. 22. P. 117–127.
  21. Aschemann H., Kostin G.V. et al. Integrodifferential approaches to frequency analysis and control design for compessible fluid flow in a pipeline element // Mathematical and Computer Modelling of Dynamical Systems. 2014. V. 20. № 5. Р. 504–527. https://doi.org/10.1080/13873954.2013.842595

Supplementary files

Supplementary Files
Action
1. JATS XML

Copyright (c) 2025 Russian Academy of Sciences