Stability, electronic and magnetic properties of Dirac semimetall Cd₃As₂, doped by manganese and chromium

Cover Page

Cite item

Full Text

Open Access Open Access
Restricted Access Access granted
Restricted Access Subscription or Fee Access

Abstract

Doping Dirac semimetals by magnetic atoms promises the development of new topological materials with broken time-reversal symmetry. According to the theoretical models, the unusual transport properties should be observed in such materials: negative magnetoresistance, π Aharonov–Bohm effect, quantum Hall effect and other ones. However, the real alloys are complex objects which differ in many ways from model representations. In this paper the stability and properties of two substitutional alloys are analysed by means of the first principles calculations: (Cd1xMnx)3As2 and (Cd1xCrx)3As2. The main difference between these two topological alloys is due to the type of doping: isovalent in case of Mn and non-isovalent in case of Cr. Our calculations show that the valence of doped atoms determines directly the position of the Fermi level and the nature of spin ordering in alloys under consideration, as well as the preservation of the Dirac cone in electron spectrum. The features found are of a regular nature and weakly depend on the details of the spatial arrangement of magnetic atoms in alloys.

Full Text

Restricted Access

About the authors

E. T. Kulatov

Prokhorov General Physics Institute, Russian Academy of Sciences

Author for correspondence.
Email: kulatov@nsc.gpi.ru
Russian Federation, Moscow

Yu. A. Uspenskii

Lebedev Physical Institute, Russian Academy of Sciences

Email: uspenski@td.lpi.ru
Russian Federation, Moscow

References

  1. Armitage N.P., Mele E.J., Vishvanath A. Weyl and Dirac semimetals in three-dimensional solids // Rev. Mod. Phys. 2018. V. 90. № 1. 015001. https://doi.org/10.1103/RevModPhys.90.015001
  2. Wang S., Lin B.C., Wang A.Q., Yu D.P., Liao Z.M. Quantum Transport in Dirac and Weyl Semimetals: A Review // Adv. Phys.: X. 2017. V. 2. P. 518–544. https://doi.org/10.1080/23746149.2017.1327329
  3. Burkov A.A. Topological Semimetal // Nat. Mater. 2016. V. 15. P. 1145–1148. https://doi.org/10.1038/nmat4788
  4. Wang A.-Q., Ye X.-G., Yu D.-P., Liao Z.M. Topological semimetal nanostructures: from properties to topotronics // ACS Nano. 2020. V. 14. P. 3755–3778. https://doi.org/10.1021/acsnano.9b07990
  5. Liu P., Williams J.R., Cha J.J. Topological nanomaterials // Nat. Rev. Mater. 2019. V. 4. P. 479–496. https://doi.org/10.1038/s41578-019-0113-4
  6. Wang L.X., Li C.Z., Yu D.P., Liao Z.M. Aharonov–Bohm Oscillations in Dirac Semimetal Cd3As2 Nanowires // Nat. Commun. 2016. V. 7. 10769. https://doi.org/10.1038/ncomms10769
  7. Yu W., Pan W., Medlin D.L., Rodriguez M.A., Lee S.R., Bao Z.Q., Zhang F. π and 4π Josephson Effects Mediated by a Dirac Semimetal // Phys. Rev. Lett. 2018. V. 120. 177704. https://doi.org/10.1103/PhysRevLett.120.177704
  8. Ali M.N., Gibson Q., Jeon S., Zhou B.B., Yazdani A., Cava R.J. The crystal and electronic structures of Cd3As2, the three-dimensional electronic analogue of graphene // Inorg. Chem. 2014. V. 53. P. 4062–4067. https://doi.org/10.1021/ic403163d
  9. He L.P., Hong X.C., Dong J.K., Pan J., Zhang Z., Zhang J., Li S.Y. Quantum transport evidence for the three-dimensional Dirac semimetal phase in Cd3As2 // Phys. Rev. Lett. 2014. V. 113. 246402. https://doi.org/10.1103/PhysRevLett.113.246402
  10. Lv B.Q., Qian T., Ding H. Experimental perspective on three-dimensional topological semimetals // Rev. Mod. Phys. 2021. V. 93. 025002. https://doi.org/10.1103/RevModPhys.93.025002
  11. Bernevig B., Felser C., Beidenkopf H. Progress and prospects in magnetic topological materials // Nature. 2022. V. 603. P. 41–51. https://doi.org/10.1038/s41586-021-04105-x
  12. Deng M.-X., Luo W., Wang R.-Q., Sheng L., Xing D.Y. Weyl semimetal induced from a Dirac semimetal by magnetic doping // Phys. Rev. B. 2017. V. 96. P. 155141–155147. https://doi.org/10.1103/PhysRevB.96.155141
  13. Neupane M., Xu S.-Y., Sankar R., Alidoust N., Bian G., Liu C., Belopolski I., Lin H., Bansil A., Chou F., Hasan M.Z., Chang T.-R., Jeng H.-T. Observation of a three-dimensional topological Dirac semimetal phase in high-mobility Cd3As2 // Nat. Commun. 2014. V. 5. P. 3786–3793. https://doi.org/10.1038/ncomms4786
  14. Liu Z.K., Jiang J., Zhou B., Wang Z.J., Zhang Y., Weng H.M. et al. A stable three-dimensional topological Dirac semimetal Cd3As2 // Nat. Mater. 2014. V. 13. P. 677–681. https://doi.org/10.1038/nmat3990
  15. Wang He, Wang H., Liu H., Lu H., Yang W., Jia S., Liu X.-J., Xie X.C., Wei J., Wang J. Observation of superconductivity induced by a point contact on 3D Dirac semimetal Cd3As2 crystals // Nat. Mater. 2015. V. 15. № 1. P. 38–42. https://doi.org/10.1038/nmat4456
  16. Lu W., Ge S.F., Liu X.F., Lu H., Li C.Z., Lai J.W., Zhao C.A., Liao Z.M., Jia S., Sun D. Ultrafast relaxation dynamics of photoexcited Dirac fermions in the three-dimensional Dirac semimetal Cd3As2 // Phys. Rev. B. 2017. V. 95. 024303. https://doi.org/10.1103/PhysRevB.95.024303
  17. Jin H., Dai Y., Ma Y.-D., Li X.-R., Wei W., Yua L., Huang B.-B. The electronic and magnetic properties of transition-metal element doped three-dimensional topological Dirac semimetal in Cd3As2 // J. Mater. Chem. C2015. V. 3. № 15. P. 3547–3551. https://doi.org/10.1039/C4TC02609H
  18. Guo J., Zhao X., Sun N., Xiao X., Liu W., Zhang Z. Tunable quantum Shubnikov–de Haas oscillations in antiferromagnetic topological semimetal Mn-doped Cd3As2 // J. Mater. Sci. Tech. 2021. V. 76. P. 247–253. https://doi.org/10.1016/j.jmst.2020.11.023
  19. Kulatov E.T., Uspenskii Yu.A., Oveshnikov L.N., Mekhiya A.B., Davydov A.B., Ril’ A.I., Marenkin S.F., Aronzon B.A. Electronic, magnetic and magnetotransport properties of Mn-doped Dirac semimetal Cd3As2 // Acta Materialia. 2021. V. 219. P. 117249–117258. https://doi.org/10.1016/j.actamat.2021.117249
  20. Yuan X., Cheng P., Zhang L., Zhang C., Wang J., Sun Q., Zhou P., Zhang D.W., Hu Z., Wan X., Yan H., Li Z., Xiu F., Liu Y. Direct observation of Landau level resonance and mass generation in Dirac semimetal Cd3As2 // Nano Lett. 2017. V. 17. P. 2211–2219. https://doi.org/10.1021/acs.nanolett.6b04778
  21. Liu Y., Tiwari R., Narayan A., Jin Z., Yuan X., Zhang C., Chen F., Li L., Xia Z., Sanvito S., Zhou P., Xiu F. Cr doping induced negative transverse magnetoresistance in Cd3As2 thin films // Phys. Rev. B. 2018. V. 97. № 8. 085303. https://doi.org/10.1103/PhysRevB.97.085303
  22. Kresse G., Furthmuller J. Efficient iterative schemes for ab initio total energy calculations using a plane–wave basis set // Phys. Rev. B. 1996. V. 54. № 16. P. 11169–11186. https://doi.org/10.1103/PhysRevB.54.11169
  23. Perdew J.P., Burke K., Ernzerhof M. Generalized gradient approximation made simple // Phys. Rev. Lett. 1996. V. 77. № 18. P. 3865–3868. https://doi.org/10.1103/PhysRevLett.77.3865
  24. Wang V., Xu N., Liu J.C., Tang G., Geng W.T. VASPKIT: A User-Friendly Interface Facilitating High-Throughput Computing and Analysis Using VASP Code // Computer Physics Communications. 2021. V. 267. P. 108033–108051. https://doi.org/10.17632/v3bvcypg9v.1
  25. Stoner E.C. Collective electron ferromagnetism // Proc. Roy. Soc. London A. 1938. V. 165. № 922. P. 372–414. 10.1098/rspa.1938.0066' target='_blank'>https://doi: 10.1098/rspa.1938.0066
  26. Kramers H.A. L’interaction entre les atomes magnétogènes dans un cristal paramagnétique // Physica. 1934. V. 1. P. 182–192. https://doi.org/10.1016/S0031-8914(34)90023-9
  27. Anderson P.W. Antiferromagnetism. Theory of superexchange interaction // Phys. Rev. 1950. V. 79. P. 350–356. https://doi.org/10.1103/PhysRev.79.350
  28. Zener C. Interaction between the d-shells in the transition metals. II. Ferromagnetic compounds of manganese with Perovskite structure // Phys. Rev. 1951. V. 82. P. 403–405. https://doi.org/10.1103/PhysRev.82.403
  29. Anderson P.W., Hasegawa H. Considerations on double exchange // Phys. Rev. 1955. V. 100. P. 675–681. https://doi.org/10.1103/PhysRev.100.675
  30. Kulatov E., Uspenskii Y., Mariette H., Cibert J., Ferrand D., Nakayama H., Ohta H. Ab initio study of magnetism in III–V- and II–VI-based diluted magnetic semiconductors // J. Supercond. Nov. Magn. 2003. V. 16. P. 123–126. https://doi.org/10.1023/A:1023209423446
  31. Uspenskii Yu., Kulatov E., Mariette H., Nakayama H., Ohta H. Ab initio study of the magnetism in GaAs, GaN, ZnO, and ZnTe–based diluted magnetic semiconductors // J. Magn. Magn. Mater. 2003. V. 258–259. P. 248–250. https://doi.org/10.1016/S0304-8853(02)01033-8
  32. Uspenskii Yu.A., Kulatov E.T. Ab initio calculation and analysis of the properties of digital magnetic heterostructures and diluted magnetic semiconductors of IV and III–V groups // J. Magn. Magn. Mater. 2009. V. 321. P. 931–934. https://doi.org/10.1016/j.jmmm.2008.11.057
  33. Celinski Z., Burlan A., Rzepa B., Zdanowicz W. Preparation, structure and magnetic properties of (Cd1–xMnx)3As2 crystals // Mat. Res. Bull. 1987. V. 22. № 3. P. 419–426. https://doi.org/10.1016/0025-5408(87)90061-4
  34. Denissen C.J.M., Nishihara H., Nouwens P.A.M., Kopinga K., de Jonge W.J.M. Spin glass behavior of (Cd1–xMnx)3As2 // J. Magn. Magn. Mater. 1986. V. 54–57. № 3. P. 1291–1292. https://doi.org/10.1016/0304-8853(86)90823-1
  35. Denissen C.J.M., Nishihara H., van Gool J.C., de Jonge W.J.M. Magnetic behavior of the semimagnetic semiconductor (Cd1–xMnx)3As2 // Phys. Rev. B. 1986. V. 33. № 11. P. 7637–7646. https://doi.org/10.1103/PhysRevB.33.7637
  36. Kulatov E.T., Uspenskii Yu.A., Kugel K.I. Non-trivial evolution of the Dirac cone in chromium doped Dirac semimetal Cd3As2 // J. Phys. Chem. Solids. 2024. V. 194. 112215. https://doi.org/10.1016/j.jpcs.2024.112215
  37. Ril’ A.I., Oveshnikov L.N., Ovcharov A.V., Marenkin S.F. Synthesis and phase composition of Cd3As2 Dirac semimetal crystals doped with Cr // Vacuum. 2024. V. 230. 113692. https://doi.org/10.1016/j.vacuum.2024.113692

Supplementary files

Supplementary Files
Action
1. JATS XML
2. Fig. 1. Primitive cells: configuration 1 (a), configuration 2 (b) and the corresponding Brillouin zone (c) of the alloys (Cd1–xMnx)3As2 and (Cd1–xCrx)3As2. Cd atoms are shown in purple, As atoms in green, and Mn (or Cr) atoms in blue.

Download (35KB)
3. Fig. 2. Electronic structure of the Cd₃As₂ DP: (a) – band structure of the compound along several directions of the ZB, (b) – density of electronic states (DES) of Cd₃As₂ near the Fermi level.

Download (36KB)
4. Fig. 3. Density of states (DES) in the (Cd₁₋ₓMnₓ)₃As₂ alloy: on the left – configuration 1, on the right – configuration 2. The calculation results for different spin orderings are shown in the figures: (a) – NM state, (b) – FM state, (c) – AFM state. The partial contribution of non-magnetic Mn atoms is shown by the green line, Mn↑ atoms – by the red line, and Mn↓ – by the blue line. For the AFM state, the contributions of Mn↑ and Mn↓ correspond to the first Mn atom in the primitive cell of Cd₃As₂

Download (88KB)
5. Fig. 4. Density of electron states (DES) in the alloy (Cd₁₋ₓCrₓ)₃As₂: on the left – configuration 1, on the right – configuration 2. The results of calculations for different spin orderings are shown in the figures: (a) – NM state, (b) – FM state, (c) – AFM state. The notations for the partial contributions of Cr atoms are similar to those used in Fig. 3.

Download (97KB)

Copyright (c) 2025 Russian Academy of Sciences