Фотоиндуцированный перенос электрона в реакциях 6-оксофаскаплизина с биомолекулами. Исследование методом химической поляризации ядер

Обложка

Цитировать

Полный текст

Открытый доступ Открытый доступ
Доступ закрыт Доступ предоставлен
Доступ закрыт Доступ платный или только для подписчиков

Аннотация

Разработан усовершенствованный подход для синтеза противоопухолевого агента 6-оксофаскаплизина, фотохимическая активность которого впервые исследована методом химической поляризации ядер. Установлено, что молекула 6-оксофаскаплизина в триплетном возбужденном состоянии вступает в реакцию переноса электрона с биомолекулами: ароматическими аминокислотами (триптофан и тирозин) и 1,4-дигидропиридином (аналог NADH), – а также происходит перенос энергии на молекулу кислорода с образованием синглетного кислорода. Установлена структура промежуточного радикального интермедиата 6-оксофаскаплизина. Эти данные могут быть полезны для оценки перспектив использования 6-оксофаскаплизина в фотодинамической терапии.

Об авторах

Н. Э. Поляков

Институт химической кинетики и горения им. В.В. Воеводского Сибирского отделения Российской академии наук

630090 Новосибирск, Россия

М. А. Ульянова

Институт химической кинетики и горения им. В.В. Воеводского Сибирского отделения Российской академии наук

630090 Новосибирск, Россия

В. А. Тимошников

Институт химической кинетики и горения им. В.В. Воеводского Сибирского отделения Российской академии наук

630090 Новосибирск, Россия

Н. И. Комарова

Новосибирский институт органической химии им. Н.Н. Ворожцова Сибирского отделения Российской академии наук

630090 Новосибирск, Россия

В. И. Краснов

Новосибирский институт органической химии им. Н.Н. Ворожцова Сибирского отделения Российской академии наук

630090 Новосибирск, Россия

В. В. Фоменко

Новосибирский институт органической химии им. Н.Н. Ворожцова Сибирского отделения Российской академии наук

Email: fomenko@nioch.nsc.ru
630090 Новосибирск, Россия

Н. Ф. Салахутдинов

Новосибирский институт органической химии им. Н.Н. Ворожцова Сибирского отделения Российской академии наук

630090 Новосибирск, Россия

Список литературы

  1. Zhidkov M.E., Kantemirov A.V., Koisevnikov A.V., Andin A.N., Kuzmich A.S. // Tetrahedr. Lett. 2018. V. 59. P. 708–711. https://doi.org/10.1016/J.TETLET.2018.01.023
  2. Luo L., Xu G. // Int. J. Mol. Sci. 2022. V. 23. P. 13774. https://doi.org/10.3390/ijms232213774
  3. Khokhar S., Feng Y., Campitelli M.R., Ekins M.G., Hooper J.N.A., Beattie K.D., Sadowski M.C., Nelson C.C., Davis R.A. // Bioorg. Med. Chem. Lett. 2014. V. 24. № 15. P. 3329–3332. https://doi.org/10.1016/j.bmcl.2014.05.104
  4. Wang C., Wang S., Li H., Hou Y., Cao H., Hua H., Li D. // Mar. Drugs. 2023. V. 21. P. 226. https://doi.org/10.3390/md21040226
  5. Kaptein R. // J. Chem. Soc. D: Chem. Commun. 1971. № 14. P. 732–733. https://doi.org/10.1039/C29710000732
  6. Salikhov K.M., Molin Yu.N., Sagdeev R.Z.б Buchachenko A.L. Spin polarization and magnetic effects in radical reactions. Molin Yu.N. (ed.). Budapest, Hungary, Academiai Kiadó,1984. 419 p.
  7. Leshina T.V., Kruppa A.I., Taraban M.B. CIDNP Applications. In: Encyclopedia of spectroscopy and spectrometry. Third Edition. 2017. P. 256–262. http://dx.doi.org/10.1016/B978-0-12-803224-4.00121-7
  8. Morozova O.B., Ivanov K.L., Kiryutin A.S., Sagdeev R.Z., Köchling T., Vieth H.-M., Yurkovskaya A.V. // Phys. Chem. Chem. Phys. 2011. V. 13. № 14. P. 6619–6627. https://doi.org/10.1039/c0cp02449j
  9. Morozova O.B., Ivanov K.L. // Chem. Phys. Chem. 2019. V. 20. № 2. P. 197–215. https://doi.org/10.1002/cphc.201800566
  10. Goez M. Elucidating organic reaction mechanisms using photo-CIDNP spectroscopy. In: Hyperpolarization methods in NMR spectroscopy. Kuhn L.T. (ed.). Berlin, Heidelberg, 2013. P. 1–32. https://doi.org/10.1007/128_2012_348
  11. Kuhn L.T., Bargon J. Exploiting nuclear spin polarization to investigate free radical reactions via in situ NMR. In: In situ NMR methods in catalysis. Bargon J., Kuhn L.T. (eds.). Berlin, Heidelberg, 2007. P. 125–154. https://doi.org/10.1007/128_2007_119
  12. Polyakov N.E., Khan V.K., Taraban M.B., Leshina T.V., Luzina O.A., Salakhutdinov N.F., Tolstikov G.A. // Org. Biomol. Chem. 2005. V. 3. P. 881–885. https://doi.org/10.1039/b416133e
  13. Taraban М.В., Kruppa A.I., Polyakov N.E., Leshina T.V., Lūsis V., Muceniece D., Duburs G. // J. Photochem. Photobiol. A Chem. 1993. V. 73. P. 151–156. https://doi.org/10.1016/1010-6030(93)80044-A
  14. Mastova A.V., Selyutina O.Yu., Polyakov N.E. // Membranes. 2022. V. 12. P. 460. https://doi.org/10.3390/membranes12050460
  15. Baram G.I., Grachev M.A., Komarova N.I., Perelroyzen M.P., Bolvanov Y.A., Kuzmin S.V., Kargaltsev V.V., Kuper E.A. // J. Chromatogr. A. 1983. V. 264. № 1. P. 69–90. https://doi.org/10.1016/S0021-9673(01)95007-1
  16. Hermosilla L., Calle P., García de la Vega J.M., Sieiro C. // J. Phys. Chem. A. 2005. V. 109. № 6. P. 1114–1124. https://doi.org/10.1021/jp0466901
  17. Weigend F. // Phys. Chem. Chem. Phys. 2006. V. 8. № 9. P. 1057–1065. https://doi.org/10.1039/b515623h
  18. Neese F., Wennmohs F., Hansen A., Becker U. // Chem. Phys. 2009. V. 356. № 1–3. P. 98–109. https://doi.org/10.1016/j.chemphys.2008.10.036
  19. Barone V., Cossi M. // J. Phys. Chem. A. 1998. V. 102. № 11. P. 1995–2001. https://doi.org/10.1021/jp9716997
  20. Oberg C., Buthelezi M.T. Binding of Cu2+ ions to indigo derivatives in aqueous media. 2023. Available at SSRN: http://dx.doi.org/10.2139/ssrn.4455433
  21. Mao Y., Chen H., Zhu W., Ni S., Luo S., Tang S., Chen Z., Wang Q., Xu J., Tu Q., Chen H., Zhu L. // J. Inflam. Res. 2025. V. 18. P. 883–894. https://doi.org/10.2147/JIR.S498340

Дополнительные файлы

Доп. файлы
Действие
1. JATS XML

© Российская академия наук, 2025