Synthesis and Crystal Structure of Cobalt Complexes with Cucurbit[6]uril
- Authors: Andrienko I.V.1, Samsonenko D.G.1, Kovalenko E.A.1
-
Affiliations:
- Nikolaev Institute of Inorganic Chemistry, Siberian Branch, Russian Academy of Sciences
- Issue: Vol 51, No 10 (2025)
- Pages: 611-620
- Section: Articles
- URL: https://consilium.orscience.ru/0132-344X/article/view/695904
- DOI: https://doi.org/10.7868/S3034549925100029
- ID: 695904
Cite item
Abstract
Four cobalt complexes with cucurbit[6]uril (CB[6]), [Co(H2O)6](Bdc) · CB[6] · 14.5H2O (I), 2(H2NMe2)2[CoCl4] · CB[6] ·12H2O (II), [{Co(H2O)4Cl}4(CB[6])]Cl4 · 9H2O (III) and [Co(H2O)6]-[Co(H2O)5(Dmf)][CoCl4]2 · CB[6] · 6H2O (IV), were prepared by evaporation of the reaction solution containing cobalt chloride and cucurbit[6]uril (CB[6]). According to X-ray diffraction data, compound I is formed by packing of cationic cobalt aqua complexes, terephthalate anions, and CB[6] molecules linked together by hydrogen bonds with crystallization water molecules into a supramolecular cage. The structure of compound II represents a packing of CB[6] molecules, dimethylammonium cations, and anionic cobalt chloro complexes. Compound III contains tetranuclear cationic cobalt chloro aqua complexes with CB[6], with chloride anions acting as counter-ions. The crystal structure of IV is a packing of cationic cobalt aqua complexes, anionic cobalt chloro complexes, and CB[6] molecules linked by hydrogen bonds with crystallization water molecules into a supramolecular cage. The resulting compounds are characterized by IR spectra and elemental analysis data.
About the authors
I. V. Andrienko
Nikolaev Institute of Inorganic Chemistry, Siberian Branch, Russian Academy of SciencesNovosibirsk, Russia
D. G. Samsonenko
Nikolaev Institute of Inorganic Chemistry, Siberian Branch, Russian Academy of SciencesNovosibirsk, Russia
E. A. Kovalenko
Nikolaev Institute of Inorganic Chemistry, Siberian Branch, Russian Academy of Sciences
Email: e.a.kovalenko@niic.nsc.ru
Novosibirsk, Russia
References
- Demakov P.A., Kovalenko K.A., Lavrov A.N. et al. // Inorganics. 2023. V. 11. № 6. P. 259. https://doi.org/10.3390/inorganics11060259
- Abasheeva K.D., Demakov P.A., Polyakova E.V. et al. // Nanomaterials. 2023. V. 13. P. 2773. https://doi.org/10.3390/nano13202773
- Павлов Д.И., Лавров А.Н., Самсоненко Д.Г. и др. // Коорд. химия. 2024. Т. 50. № 9. С. 577 (Pavlov D.I., Lavrov A.N., Samsonenko D.G. et al. // Russ. J. Coord. Chem. 2024. V. 50. № 9. P. 673). https://doi.org/10.1134/S1070328424600475
- Ishil N., Okamura Y., Chiba S. et al. // J. Am. Chem. Soc. 2008. V. 130. P. 24. https://doi.org/10.1021/ja077666e
- Wang X.L., Bao X., Wei Y.J. et al. // Z. Anorg. Allg. Chem. 2015. V. 641. P. 573. https://doi.org/10.1002/zaac.201400429
- Xu Y.H., Qu X.N., Song H.B. et al. // Polyhedron. 2007. V. 26. P. 741. https://doi.org/10.1016/j.poly.2006.08.036
- Zhang C.X., Zhang Y.Y., Sun Y.Q. // Polyhedron. 2010. V. 29. P. 1387. https://doi.org/10.1016/j.poly.2009.12.039
- Ghosh S., Kamilya S., Das M. et al. // Inorg. Chem. 2020. V. 59. № 10. P. 7067. https://doi.org/10.1021/acs.inorgchem.0c00538
- Song D., Li B., Li X. et al. // ChemSusChem. 2020. V. 13. P. 394. https://doi.org/10.1002/cssc.201902668
- Kovalenko E.A., Mit’kina T.V., Geras’ko O.A. et al. // Russ. Coord. Chem. 2011. V. 37. P. 163 (Коваленко Е. А., Митькина Т. В., Герасько О. А. и др. // Коорд. химия. 2011. Т. 37. № 2. С. 1). https://doi.org/10.1134/S1070328411020023
- Mitkina T.V., Sokolov M.N., Naumov D.Y. et al. // Inorg. Chem. 2006. V. 45. P. 6950. https://doi.org/10.1021/ic060502z
- Yi S., Captain B., Ottaviani M.F. et al. // Langmuir. 2011. V. 27. № 9. P. 5624. https://doi.org/10.1021/la2005198
- Zheng J., Meng Y., Zhang L. et al. // Inorg. Chim. Acta. 2022. V. 529. Р. 120669. https://doi.org/10.1016/j.ica.2021.120669
- Zheng J., Ma Y., Yanga X. et al. // RSC Adv. 2022. V. 12. Р. 18736. https://doi.org/10.1021/10.1039/d2ra02459d
- Limei Z., Jiannan Z., Yunqian Z. et al. // Supramol. Chem. 2008. V. 20. № 8. P. 709. https://doi.org/10.1080/10610270701747602
- Shuai X., Kai-Wen C., Ming-Hui Z. et al. // Chin. J. Inorg. Chem. 2023. V. 39. P. 585. https://doi.org/10.11862/CJIC.2023.037
- Liang Z.-Y., Chen H.-Y., Shan C.-Y. et al. // Polyhedron. 2016. V. 110. P. 125. http://dx.doi.org/10.1016/j.poly.2016.02.029
- Min W., Ren Q., Yuan X.-Y. et al. // J. Mol. Struc. 2023. V. 1294. P. 136429. https://doi.org/10.1016/j.molstruc.2023.136429
- Liang L.-L., Zhao Y., Chen K. et al. // Polymers. 2013. V. 5. P. 418. https://doi.org/10.3390/polym5020418
- Wang Z.-B., Zhao M., Li Y.-Z. et al. // Supramol. Chem. 2008. V. 20. № 8. P. 689. https://doi.org/10.1080/10610270701732877
- Андриенко И.В., Коваленко Е.А., Кардамонова И.Е. и др. // Коорд. химия. 2019. T. 45. № 6. С. 372 (Andrienko I.V., Kovalenko E.A., Karmadonova I.E. et al. // Russ. J. Coord. Chem. 2019. V. 45, № 6, P. 433). https://doi.org/10.1134/S1070328419060010
- Day A., Arnold A.P., Blanch R.J. et al. // J. Org. Chem., 2001. V. 66. P. 8094. https://doi.org/10.1021/jo015897c
- Bruker Apex3 Software Suite: Apex3, SADABS-2016/2 and SAINT. Version 2018.7-2. Madison (WI, USA): Bruker AXS Inc., 2017.
- CrysAlisPro Software system, version 1.171.42.89a. Rigaku Oxford Diffraction, Rigaku Corporation, Wrocław, Poland, 2023.
- Sheldrick G.M. // Acta Crystallogr. A. 2015. V. 71. № 1. P. 3. https://doi.org/10.1107/S205327331402637
- Sheldrick G.M. // Acta Crystallogr. C. 2015. V. 71. №. 1. P. 3. https://doi.org/10.1107/S2053229614024218
- Hübschle C.B., Sheldrick G.M., Dittrich B. // J. Appl. Cryst. 2011. V. 44. № 6. P. 1281. https://doi.org/10.1107/S0021889811043202
- Spek A.L. // Acta Crystallogr. 2015. V. 71. № 1. P. 9. https://doi.org/10.1107/S2053229614024929
- Kovalenko E.A., Samsonenko D.G., Naumov D.Yu. et al. // J. Struc. Chem. 2014. V. 55. S274. https://doi.org/10.1134/S0022476614080113
- Nakamoto K. Infrared and Raman Spectra of Inorganic and Coordination Compounds. Pt B. Wiley, 2009. 416 p.
Supplementary files



