Polymorphism of genes SOCS5 and EGFR with bronchial asthma

Cover Page

Cite item

Full Text

Abstract

The article presents the scientific literature review of the previous 20 years about gene - supressor of cytokine signaling SOCS5 and gene of epidermal growth factor receptor EGFR adapted from data pool of OMIM, PubMed. Were analised the mechanisms of the gene SOCS5 and gene EGFR, structure and functioning of proteins encoded by these genes. The results of published studies have confirmed the role of SOCS5 gene and EGFR in the pathology of the lungs and other system of organs. For example, some studies have shown аssociation of these genes with the development of asthma.

Full Text

Бронхиальная астма (БА) - хроническое воспалительное заболевание дыхательных путей, сопровождающееся обратимой бронхиальной обструкцией, в основе развития которого лежит сложный механизм взаимодействия большого количества генов и факторов окружающей среды [1, 2]. Несмотря на то что в последние годы имелись большие успехи в терапии и диагностике БА, данная нозология по-прежнему входит в ранг важной медицинской и социальной проблемы. Актуальность проблемы обусловлена также тем, что БА очень часто является причиной инвалиди-зации и смертности населения [3]. По имеющимся данным зарубежных [1, 3] и отечественных авторов [4, 5] подтверждается высокая распространенность БА как в России, так и за границей. За последние годы протестировано более чем 500 генов, которые показывают связь с данным заболеванием, и для более чем 100 из них показана ассоциация с БА, на основании чего можно сказать, что данные гены являются генами предрасположенности к ней [1, 6]. По одной из классификаций генов БА все гены предрасположенности можно условно поделить на 4 группы: гены, ассоциированные с легочной функцией, ремоделировани-ем дыхательных путей и бронхиальной гиперреактивностью; гены, связанные с дифференцировкой и функционированием Т-хелперов 2-го типа (Th2); гены врожденного иммунного ответа и иммунорегуляции; гены иммунитета слизистых оболочек [7]. Чаще всего развитие БА ассоциируется с изменениями в системе адаптивного и врожденного иммунного ответа по типу дифференцировки нативных СD4-лимфоцитов-хел-перов в ^2-лимфоциты с дальнейшей иммуноглобулин E-сенсибилизацией и формированием аллергического воспаления в дыхательных путях [8]. На сегодняшний день подробно изучено большое количество генов ^2-профиля иммунного ответа, которые влияют на развитие аллергической БА. Например, гены: IFNG, CCR2, TGF-Рь IL4, IL4RA, STAT6, GATA3, TBX21, STAT2, STAT4 [1, 9-12]. Исследований, показывающих взаимосвязь БА с генами TM-профиля, являющегося антагонистом ^2-иммунитета и тесно связанного с иммунным ответом на бактериальную инфекцию, имеется мало [2]. Однако в последнее время в научных публикациях появляется все больше информации о роли бактериальной флоры, которая колонизирует дыхательные пути и влияет не только на развитие БА, но и на тяжесть ее течения [13, 14]. Из изложенного следует, что изучение генов, которые ответственны за TM-профиль иммунного ответа в отношении развития БА, весьма актуально. Одна из главных ролей в определении типа иммунного ответа отводится развитию Т-хелперов, секретирующих разные цитокины [15]. Последующее развитие Т-хелперов, а также их дифференцировку определяют синтезируемые Th1- и ^2-клетками цитокины, которые участвуют в начальной стадии активации при помощи Т-клеточного рецептора. Интерлейкин (ИЛ)-2, интерферон и фактор некроза опухоли продуцируются ТЫ-клетками, также они стимулируют эффекторные клеточные реакции для устранения внутриклеточных патогенов. ИЛ-4, 5, 6, 10 и 13 продуцируются ^2-клетками, а также оказывают влияние на увеличение гуморальных и иммунных реакций против нематод и паразитов. За стимуляцию иммунного ответа посредством тучных клеток и эозинофилов и ускорение аллергических реакций отвечают ИЛ-4 и ИЛ-5. Синтезируемый дендритными клетками и активированными макрофагами ИЛ-12 отвечает за развитие ТЫ-клеток, в то время как ИЛ-4 является основным цитокином для развития ^2-клеток. Посредством выработки интерферона и ИЛ-4 Th1- и ^2-клет-ками происходит взаимное ингибирование, которое проявляется подавлением дифференцировки и активности соответствующих популяций Th-клеток [15-20]. JANUS-кина-за (JAK)/сигнальный белок и активатор транскрипции (STAT)-сигнальный путь - одни из главных механизмов, с помощью которых рецепторы цитокинов преобразовывают внутриклеточные сигналы. STAT4 и STAT6 активируются ИЛ-12 и ИЛ-4 [19]. ИЛ-4-опосредованная активация STAT6 влияет на экспрессию факторов транскрипции GATA-3 (GATA-связывающего протеина 3), которые приводят к увеличению синтеза ^2-опосредованных цитокинов [21, 22]. В ряде исследований показано, как активация STAT6 после стимуляции ИЛ-4 селективно повреждала ТЫ-клетки [23, 24], что свидетельствует о роли IL4R-опосредованной сигнализации в фазу первоначальной активации и что оказывает сильное влияние на дифференцировку пути Th-клеток. EGFR (ген рецептора эпидермального фактора роста) располагается в локусе 11.2 (7p11.2) на коротком плече хромосомы 7. Протеин, который кодируется данным геном, является трансмембранным гликопротеином, который относится к надсемейству протеинкиназы. Данный протеин представляет собой рецептор для членов семьи эпидермаль-ного фактора роста (EGF). EGFR является белком, расположенным на поверхности клетки, связывающим EGF. Активирование EGFR происходит при связывании с его специфическими лигандами, которые затем переходят из неактивной формы в активную, что в последующем вызывает авто-фосфорилирование тирозина в С-концевом домене и активацию последующих каскадов сигнальной трансдукции, ведущей к синтезу ДНК и пролиферации клеток [25-27]. В последние десятилетия показана важная роль EGF и его рецептора EGFR в канцерогенезе органов дыхания и других систем органов, продемонстрирована решающая роль EGFR в агрессивном росте опухолей [28-34]. В последние несколько лет опубликованы научные работы, демонстрирующие механизм действия EGFR при разных но-зологиях [28-36]. Есть исследование, проведенное в Китае, показывающее ассоциацию ревматоидного артрита (РА) с однонуклео-тидным полиморфизмом (ОНП) гена EGFR и повышенным уровнем сывороточного белка EGFR, что свидетельствует о важности дальнейшего исследования EGFR как терапевтической мишени при РА [36]. Развитие ряда интерстициальных заболеваний легких, по данным некоторых исследований, ассоциировано с ОНП гена EGFR [35]. Ингибиторы, предназначенные для EGF, разрабатываются к применению в лечении раковых заболеваний, по данным зарубежных исследователей [28, 32]. Все чаще стала обсуждаться вероятная роль гена EGFR в предрасположенности к БА. Показана ассоциация связи гена EGFR с ремоделированием и гиперреактивностью дыхательных путей [37] и бронхолегочной системы при повышенной концентрации EGFR у мышей с БА [38]. SOCS5 - ген - супрессор цитокиновых сигналов, располагается в локусе 21 (2p21) на коротком плече хромосомы 2. Белок SOCS, который кодируется этим геном, содержит SOCSBOX-домен и Sffi-домен. Данный белок относится к семейству супрессоров цитокиновых сигналов (SOCS), известных как белковое семейство STAT-индуцированных STAT-ингибиторов (SSI). Члены данного семейства SOCS известны как цитокининдуцируемые негативные регуляторы передачи сигналов цитокинов [39-42]. Специфическая функция данного белка не изучена до конца, но имеются данные, что молекула SOCS5 взаимодействует с цитоплаз-матическим участком a-цепи рецептора ИЛ-4, кодируемого геном IL4RA, что препятствует развитию ^2-иммунно-го ответа, повреждая IL-4-зависимый Jak-STAT-каскад, который ответствен за ^2-иммунный ответ [15]. Немногочисленные данные литературы показывают риск заболевания БА с ассоциацией с ОНП гена SOCS5. Исследование ОНП гена SOCS5 у жителей Томской области, различимых по наличию аллергического заболевания (БА) и описторхоза, показало взаимодействие, которое было основано на статистически значимой связи между геном SOCS5 и атопической БА у пациентов, не пораженных Opisthorchis felineus, однако ассоциаций у пациентов, зараженных гельминтами, не было выявлено [43]. Это подтверждает важную роль гельминтной инвазии в качестве экологического фактора, который влияет на связь между генетическими факторами и атопической БА. О. felineus, в частности, уменьшает риск атопической БА, которая связана с полиморфизмом гена SOCS5 [43]. ОНП rs6737848 гена SOCS5 был достоверно связан с астмой в аддитивной модели (р=0,05, отношение шансов - ОШ 0,338, 95% доверительный интервал - ДИ 0,158-0,723) и в доминирующей модели (р=0,02, ОШ 0,284, ДИ 0,126-0,638). Но не обнаруживалось связи с общим уровнем иммуноглобулина E [2]. Также показана защитная роль ОНП гена SOCS5 в отношении развития опухолей. По данным некоторых исследований, ген SOCS5 подавляет опухолевый рост посредством негативного регулирования JAK/STAT и EGF-сигнализа-ции. Разные домены в SOCS5 могут способствовать EGF-сигнализации и регуляции цитокинов [44, 45]. Последующее изучение данного вопроса может повлиять на понимание, как SOCS5 и SOCS6 участвуют в регуляции экспрессии в разных раковых клетках. В то же время уже бытует мнение, что для диагностики рака могут быть применены оба эти фактора [46]. Отрицательное регулирование ^2-опосредованного ответа на доминант-негативные SOCS3 и SOCS5 может являться мишенью для терапевтического вмешательства при аллергическом конъюнктивите, что было показано в модели на животных [47]. В исследовании на популяции жителей Ирана было показано, что потеря баланса между разными семействами белков SOCS иногда способствует развитию рассеянного склероза [48]. По данным ряда генетических исследований, уже внедряются в клиническую практику генно-терапевтические подходы к терапии БА и других аллергических заболеваний. Доказано, что результаты генетических исследований могут быть применены для проведения индивидуальной терапии. Все больше накопленных данных свидетельствует о важной роли белков SOCS в регулировании дополнительных сигнальных путей, в том числе рецепторных тирозинки-наз. Экспрессия SOCS5 и его ближайшего гомолога SOCS4 усилилась после терапии EGF, что схоже с механизмом обратной связи. В то же время экспрессия SOCS5 влияет на ощутимое снижение экспрессии уровня EGFR [49] На фоне всего описанного можно заключить, что гены SOCS5 и EGFR взаимосвязаны между собой и играют ощутимую роль в функционировании разных систем организма. По литературным данным подтверждается их влияние на функцию системы органов дыхания, на основании чего можно предположить кандидатную роль данных генов на развитие БА. Вклад данных генов, даже ввиду имеющихся литературных данных о их влиянии на систему органов дыхания, на риск развития БА изучен недостаточно. Нет исследований ассоциации данных генов с БА в восточносибирской популяции, в частности у жителей Красноярска. На основе этого дальнейшие исследования, направленные на изучение влияния генов SOCS5 и EGFR на развитие БА, являются актуальными.
×

About the authors

A. B Averyanov

Prof. V.F.Voino-Yasenetsky Krasnoyarsk State Medical University of the Ministry of Health of the Russian Federation

Email: Averyanov_a007@mail.ru
660022, Russian Federation, Krasnoyarsk, ul. Partizana Zhelezniaka, d. 1

I. I Chercashina

Prof. V.F.Voino-Yasenetsky Krasnoyarsk State Medical University of the Ministry of Health of the Russian Federation

Email: cherkashina@list.ru
660022, Russian Federation, Krasnoyarsk, ul. Partizana Zhelezniaka, d. 1

S. Yu Nikulina

Prof. V.F.Voino-Yasenetsky Krasnoyarsk State Medical University of the Ministry of Health of the Russian Federation

Email: nikulina@mail.ru
660022, Russian Federation, Krasnoyarsk, ul. Partizana Zhelezniaka, d. 1

V. A Shestovitskiy

Prof. V.F.Voino-Yasenetsky Krasnoyarsk State Medical University of the Ministry of Health of the Russian Federation

660022, Russian Federation, Krasnoyarsk, ul. Partizana Zhelezniaka, d. 1

References

  1. March M.E., Sleiman P.M., Hakonarson H. The genetics of asthma and allergic disorders. Discovery Medicine 2011; 56 (11): 35-45.
  2. Салтыкова И.В., Фрейдин М.Б., Брагина Е.Ю. и др. Ассоциация полиморфизма rs6737848 гена SOCS5 с бронхиальной астмой. вестн. рос. академии медицинских наук. 2013; 7: 53-6. doi: 10.15690/vramn.v68i7.713
  3. Global Initiative for Asthma. Global strategy for asthma management and prevention. 2016 [Accessed 2016]. Available on [www.ginasthma.org].
  4. Чучалин А.Г. Бронхиальная астма. M.: Медицина, 2003.
  5. Чучалин А.Г., Илькович M.M. Справочник по пульмонологии. М.: ГЭОТАР-Медиа, 2014.
  6. Фрейдин М.Б., Огородова Л.М., Цой А.Н., Бердникова Н.Г. Генетика бронхиальной астмы. Генетика бронхолегочных заболеваний. М.: Атмосфера, 2010; с. 78-104.
  7. Vercelli D. Discovering susceptibility genes for asthma and allergy. Nature Reviews Immunology 2008; 8 (3): 169-82. doi: 10.1038/nri2257
  8. Балаболкин И.И., Булгакова В.А. Генетические аспекты формирования эффективности и безопасности фармакотерапии и атопической бронхиальной астмы у детей. Фарматека. 2016; 14: 14-9.
  9. Разводовская А.В., Черкашина И.И., Никулина С.Ю. и др. Изучение ассоциации однонуклеотидного полиморфизма rsl800470 гена трансформирующего фактора роста бета 1 (TGF-P1) с риском развития бронхиальной астмы. Сиб. мед. обозрение. 2014; 2: 17-22. doi: 10.20333/25000136-2014-2-17-22.
  10. Черкашина И.И., Никулина С.Ю., Максимов В.Н. и др. Особенности полиморфизма гена хемокинового рецептора CCR2 у больных бронхиальной астмой и хронической обструктивной болезнью легких. Сиб. мед. обозрение. 2013; 2: 19-23.
  11. Li Y, Wu B, Xiong H et al. Polymorphisms of STAT-6, STAT-4 and IFN-gamma genes and the risk of asthma in Chinese population. Respir Med 2007; 101 (9): 1977-81. doi: 10.1016/j.rmed.2007.04.006
  12. Hsieh Y.Y, Wan L, Chang C.C. et al. STAT2*C related genotypes and allele but not TLR4 and CD40 gene polymorphisms are associated with higher susceptibility for asthma. Int J Biol Sci 2009; 5 (1): 74-81. doi: 10.7150/ijbs.5.74
  13. Ege M.J., Mayer M, Schwaiger K. et al. Environmental bacteria and childhood asthma. Allergy 2012; 67 (12): 1565-71. doi: 10.1111/all.12028
  14. Hilty M, Burke C, Pedro H et al. Disordered microbial communities in asthmatic airways. PLoS One 2010; 5 (1): е8578. DOI: 10.1371 /journal.pone.0008578
  15. Seki Y, Hayashi K, Matsumoto A et al. Expression of the suppressor of cytokine signaling-5 (SOCS5) negatively regulates IL-4-dependent STAT6 activation and Th2 differentiation. Proceedings of the National Academy of Sciences of the USA. 2002; 99 (20): 13003-8. doi: 10.1073/pnas.202477099
  16. O'Garra A. Cytokines induce the development of functionally heterogeneous T helper cell subsets. Immunity 1998; 8 (3): 275-83. doi: 10.1016/s1074-7613(00)80533-6
  17. Хаитов Р.М., Пинегин Б.В., Ярилин А.А. Руководство по клинической иммунологии. Диагностика заболеваний иммунной системы: Руководство для врачей. М.: ГЭОТАР-Медиа, 2009.
  18. Athanassakis I, Vassiliadis S. T regulatory cells: are we re-discovering T suppressors. Immunology Letters 2002; 84: 179-83. doi: 10.1016/s0165-2478(02)00182-7
  19. Murphy K.M, Ouyang W, Farrar J.D. et al. Signaling and transcription in T helper development. Аnnu Rev Immunol 2000; 18: 451-94. doi: 10.1146/annurev.immunol.18.1.451
  20. Фрейдлин И.С. Регуляторные Т-клетки: происхождение и функции. Мед. иммунология. 2005; 7 (4): 347-54.
  21. Ouyang W, Lohning M, Gao Z et al. Stat6-independent GATA-3 autoactivation directs IL-4-independent Th2 development and commitment. Immunity 2000; 12: 27-37. doi: 10.1016/s1074-7613(00)80156-9
  22. Lee H-J, Takemoto N, Kurata H et al. GATA-3 induces T helper cell type 2 (Th2) cytokine expression and chromatin remodeling in committed Th1 cells. J Exp Med 2000; 192: 105-15. doi: 10.1084/jem.192.1.105
  23. Kubo M, Ransom J, Webb D et al. T-cell subset-specific expression of the IL-4 gene is regulated by a silencer element and STAT6. The EMBO J 1997; 16: 4007-20. doi: 10.1093/emboj/16.13.4007
  24. Huang H, Paul W.E. Impaired interleukin 4 signaling in T helper type 1 cells. J of Exp Med 1998; 187: 1305-313. doi: 10.1084/jem.187.8.1305
  25. Hsu S.C., Miller S.A., Wang Y, Hung M.C. Nuclear EGFR is required for cisplatin resistance and DNA repair. Am J Transl Res 2009; 1: 249-58. doi: 10.1158/0008-5472.can-10-2384
  26. Bai J, Guo X.G., Bai X.P. Epidermal growth factor receptor-related DNA repair and radiation-resistance regulatory mechanisms: a mini-review. Asia Pac J Cancer Prevent 2012; 13: 4879-81. doi: 10.7314/apjcp.2012.13.10.4879
  27. Rodemann H.P, Dittmann K, Toulany M. Radiation-induced EGFR-signaling and control of DNA-damage repair. Int J Radiat Biol 2007; 83: 781-91. doi: 10.1080/09553000701769970
  28. Sharma S.V, Bell D.W., Settleman J, Haber D.A. Epidermal growth factor receptor mutations in lung cancer. Nat Rev Cancer 2007; 7: 169-81. doi: 10.1038/nrc2088
  29. Albitar L, Pickett G, Morgan M et al. EGFR isoforms and gene regulation in human endo-metrial cancer cells. Molecular Cancer 2010; 9: 166. doi: 10.1186/1476-4598-9-166
  30. Guillaudeau A, Durand K, Rabinovitch-Chable H et al. Adult diffuse gliomas produce mRNA transcripts encoding EGFR isoforms lacking a tyrosine kinase domain. Int J Oncol 2012; 40: 1142-52. doi: 10.3892/ijo.2011.1287
  31. Arau J.A., Ribeiro R, Azevedo I et al. Genetic polymorphisms of the epidermal growth factor and related receptor in non-small cell lung cancer - a review of the literature. Oncologist 2007; 12: 201-10. doi: 10.1634/theoncologist.12-2-201
  32. Yang P.W., Hsieh M.S., Huang Y.C. et al. Genetic variants of EGF and VEGF predict prognosis of patients with advanced esophageal squamous cell carcinoma. PLoS One 2014; 9 (6): e100326. DOI: 10.1371 /journal.pone.0100326
  33. Zhang J, Zhan Z, Wu J et al. Association among polymorphisms in EGFR gene exons, lifestyle and risk of gastric cancer with gender differences in Chinese Han subjects. PLoS One 2013; 8 (3): e59254. doi: 10.1371/journal.pone.0059254
  34. Gerger A, El-Khoueiry A, Zhang W et al. Pharmacogenetic angiogenesis profiling for first-line Bevacizumab plus oxaliplatin-based chemotherapy in patients with metastatic colorectal cancer. Clin Cancer Res 2011; 17 (17): 5783-92. doi: 10.1158/1078-0432.CCR-11-1115
  35. Li C, Wei R, Jones-Hall YL et al. Epidermal growth factor receptor (EGFR) pathway genes and interstitial lung disease: an association study. Sci Reports 2014; 4: 4893. doi: 10.1038/srep04893
  36. Huang C.M., Chen H.H., Chen D.C. et al. Rheumatoid arthritis is associated with rs17337023 polymorphism and increased serum level of the EGFR protein. PLoS One 2017; 12 (7): e0180604. DOI: 10.1371 /journal.pone.0180604
  37. Yoshikawa T, Kanazawa H. Integrated effect of EGFR and PAR-1 signaling crosstalk on airway hyperresponsiveness. Int J Mol Med 2012; 30 (1): 41-8. doi: 10.3892/ijmm.2012.981
  38. Le Cras T.D., Acciani T.H., Mushaben E.M. et al. Epithelial EGF receptor signaling mediates airway hyperreactivity and remodeling in a mouse model of chronic asthma. Am J Physiol Lung Cell Mol Physiolog 2011; 300 (3): 414-21. doi: 10.1152/ajplung.00346.2010
  39. Hilton D.J. Negative regulators of cytokine signal transduction. Cell Mol Life Sci 1999; 55: 1568-77. doi: 10.1007/s000180050396
  40. Naka T, Fujimoto M, Kishimoto T. Negative regulation of cytokine signaling: STAT-induced STAT inhibitor. Trends Biochem Sci 1999; 24: 394-8. doi: 10.1016/s0968-0004(99)01454-1
  41. Yasukawa H, Sasaki A, Yoshimura A. Negative regulation of cytokine signaling pathways. Аnnu Rev Immunol 2000; 18: 143-64. doi: 10.1146/annurev.immunol.18.1.143
  42. Feng Z.P, Chandrashekaran I.R, Low A et al. The N-terminal domains of SOCS proteins: a conserved region in the disordered N-termini of SOCS4 and 5. Proteins 2012; 80 (3): 946-57. doi: 10.1002/prot.23252
  43. Saltykova I.V, Ogorodova L.M, Bragina E.Y et al. Opisthorchis felineus liver fluke invasion is an environmental factor modifying genetic risk of atopic bronchial asthma. Acta Tropica 2014; 139: 53-6. doi: 10.1016/j.actatropica.2014.07.004
  44. Linossi E.M, Chandrashekaran I.R, Kolesnik T.B et al. Suppressor of Cytokine Signaling (SOCS) 5 utilises distinct domains for regulation of JAK1 and interaction with the adaptor protein Shc-1. PLoS One 2013; 8 (8): e70536. DOI: 10.1371 /journal.pone.0070536
  45. Zhuang G, Wu X, Jiang Z et al. Tumour-secreted miR-9 promotes endothelial cell migration and angiogenesis by activating the JAK-STAT pathway. The EMBO J 2012; 31 (17): 3513-23. doi: 10.1038/emboj.2012.183
  46. Yoon S, Yi Y.S, Kim S.S et al. SOCS5 and SOCS6 have similar expression patterns in normal and cancer tissues. Tumour Biol 2012; 33 (1): 215-21. doi: 10.1007/s13277-011 -0264-4
  47. Ozaki A, Seki Y, Fukushima A, Kubo M. The control of allergic conjunctivitis by suppressor of cytokine signaling (SOCS)3 and SOCS5 in a murine model. J Immunol 2005; 175 (8): 5489-97. doi: 10.4049/jimmunol.175.8.5489
  48. Toghi M, Taheri M, Arsang-Jang S et al. SOCS gene family expression profile in the blood of multiple sclerosis patients. J Neurol Sci 2017; 375: 481-5. doi: 10.1016/j.jns.2017.02.015
  49. Kario E, Marmor M.D, Adamsky K et al. Suppressors of cytokine signaling 4 and 5 regulate epidermal growth factor receptor signaling. J Biol Chemistry 2005; 280 (8): 7038-48. doi: 10.1074/jbc.M408575200

Supplementary files

Supplementary Files
Action
1. JATS XML

Copyright (c) 2018 Consilium Medicum

Creative Commons License
This work is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License.

СМИ зарегистрировано Федеральной службой по надзору в сфере связи, информационных технологий и массовых коммуникаций (Роскомнадзор).
Регистрационный номер и дата принятия решения о регистрации СМИ: серия ПИ № ФС77-63969 от 18.12.2015. 
СМИ зарегистрировано Федеральной службой по надзору в сфере связи, информационных технологий и массовых коммуникаций (Роскомнадзор).
Регистрационный номер и дата принятия решения о регистрации СМИ: серия
ЭЛ № ФС 77 - 69134 от  24.03.2017.

This website uses cookies

You consent to our cookies if you continue to use our website.

About Cookies