Mekhanizmy zashchity slizistoy obolochki zheludka i NO-vysvobozhdayushchie nesteroidnye protivovospalitel'nye preparaty


Cite item

Full Text

Abstract

Слизистая оболочка желудка (СОЖ) регулярно подвергается воздействию множества вредоносных субстанций и факторов, имеющих разную температуру и осмолярность, включающих большие объемы продуцируемой соляной кислоты, пепсин, способный вызвать разрушение (переваривание) тканей, лекарства, токсины, содержащиеся в пище, алкоголь, Helicobacter pylori. Однако, несмотря на обилие потенциально вредных факторов, СОЖ сохраняет свою структурную целостность и функциональность [1]. В физиологических условиях целостность СОЖ осуществляется благодаря наличию механизмов защиты, включающих: преэпителиальные факторы (слизе-бикарбонато-фосфолипидный «барьер»); эпителиальные факторы (эпителиальный «барьер»: соединенные плотными межклеточными контактами клетки поверхностного эпителия, генерирующими бикарбонат, слизь, фосфолипиды, пептиды-трилистники, простагландины – ПГ, белки теплового шока); непрерывное клеточное обновление, обеспечиваемое пролиферацией прогениторных клеток (регулируемое факторами роста, ПГЕ2 и факторами, сохраняющими жизнеспособность клеток), непрекращающимся кровоснабжением посредством микрососудов слизистой оболочки, эндотелиальным «барьером», сенсорной иннервацией, генерацией ПГ и оксида азота (NO). Таким образом, защита СОЖ состоит из: а) структурных элементов, предупреждающих проникновение повреждающих факторов внутрь, системы распознавания и эффекторных механизмов, обеспечивающих барьерные свойства; б) механизмов заживления, обеспечивающих быстрое восстановление поврежденных участков. Все эти механизмы имеют многочисленные внутренние связи между собой и координируются посредством множества химических молекул – посредников (мессенджеров). В данном обзоре мы ограничимся рассмотрением роли ПГ и NO в механизмах защиты СОЖ и нестероидных противовоспалительных препаратов (НПВП), высвобождающих NO. Детальное обсуждение всех механизмов защиты СОЖ и двенадцатиперстной кишки (ДПК) сделано в обзорах, опубликованных в рецензируемых журналах

Full Text

Слизистая оболочка желудка (СОЖ) регулярно подвергается воздействию множества вредоносных субстанций и факторов, имеющих разную температуру и осмолярность, включающих большие объемы продуцируемой соляной кислоты, пепсин, способный вызвать разрушение (переваривание) тканей, лекарства, токсины, содержащиеся в пище, алкоголь, Helicobacter pylori. Однако, несмотря на обилие потенциально вредных факторов, СОЖ сохраняет свою структурную целостность и функциональность [1]. В физиологических условиях целостность СОЖ осуществляется благодаря наличию механизмов защиты, включающих: преэпителиальные факторы (слизе-бикарбонато-фосфолипидный «барьер»); эпителиальные факторы (эпителиальный «барьер»: соединенные плотными межклеточными контактами клетки поверхностного эпителия, генерирующими бикарбонат, слизь, фосфолипиды, пептиды-трилистники, простагландины – ПГ, белки теплового шока); непрерывное клеточное обновление, обеспечиваемое пролиферацией прогениторных клеток (регулируемое факторами роста, ПГЕ2 и факторами, сохраняющими жизнеспособность клеток), непрекращающимся кровоснабжением посредством микрососудов слизистой оболочки, эндотелиальным «барьером», сенсорной иннервацией, генерацией ПГ и оксида азота (NO). Таким образом, защита СОЖ состоит из: а) структурных элементов, предупреждающих проникновение повреждающих факторов внутрь, системы распознавания и эффекторных механизмов, обеспечивающих барьерные свойства; б) механизмов заживления, обеспечивающих быстрое восстановление поврежденных участков. Все эти механизмы имеют многочисленные внутренние связи между собой и координируются посредством множества химических молекул – посредников (мессенджеров). В данном обзоре мы ограничимся рассмотрением роли ПГ и NO в механизмах защиты СОЖ и нестероидных противовоспалительных препаратов (НПВП), высвобождающих NO. Детальное обсуждение всех механизмов защиты СОЖ и двенадцатиперстной кишки (ДПК) сделано в обзорах, опубликованных в рецензируемых журналах [2–7]. Простагландины А.Robert и соавт. [8, 9] предложили концепцию «цитопротекции», которая основывалась на открытиях способности ПГ в субсекреторных дозах уменьшать или предупреждать повреждения желудка, вызываемые некротизирующими агентами (кипящая вода или 100% алкоголь). Под цитопротекцией понимают способность фармакологических агентов, изначально ПГ, предупреждать повреждения СОЖ и тонкой кишки, вызываемые воздействием разных ульцерогенных (НПВП, аспирин, желчные кислоты) и некротизирующих факторов (абсолютный спирт, кипящая вода, соляная кислота) [7–9]. Примечательно, что осуществление защитных механизмов происходит без воздействия (ингибирование) на желудочную секрецию. Рядом исследований установлено, что цитопротективные свойства ПГ распространяются на СОЖ и ДПК человека [10–15]. ПГ могут стимулировать и содействовать функционированию почти всех механизмов защиты СОЖ. Непрерывная генерация ПГ клетками СОЖ является необходимым условием для обеспечения структурной целостности и защиты против ульцерогенных и некротизирующих факторов. ПГ также способны ингибировать желудочную секрецию, увеличивать кровоток, усиливать слизе-бикарбонато-фосфолипидный барьер, ускорять эпителиальную репарацию и заживление СОЖ [11, 16–19]. Оксид азота NO представляет собой неорганический газ, образующийся в результате комбинации атомов азота и кислорода. Синтез этой молекулы является результатом конверсии аминокислоты L-аргинина в эквимолярное количество цитруллина с высвобождением NO. Этот процесс катализируется NO-синтазой (NOS), существующей в трех изоформах [20]. В желудочно-кишечном тракте (ЖКТ) экспрессируются две структурные изоформы энзима (эндотелиальная – eNOS и нейрональная – nNOS), содержащиеся в эндотелии сосудистой сети и энтеральной нервной системе соответственно [21]. Индуцибельная изоформа – iNOS экспрессируется макрофагами и нейтрофилами, но потенциальными индукторами могут быть также эпителиальные клетки и нейроны [22]. В случае когда NO продуцируется посредством nNOS и eNOS в малых, «физиологических» концентрациях, действие этой молекулы является полезным для поддержания целостности СОЖ; избыточная продукция этого посредника, образующегося вследствие активности iNOS, является вредным событием, так как ее исходом является продукция свободных радикалов – супероксида и перонитрита [22]. NO мгновенно связывается с растворимой гуатилатциклазой, катализирующей конверсию гуанозинтрифосфата в циклический гуанозинмонофосфат (цГМФ) и его накопление в цитоплазме клеток [23]. цГМФ посредством связи со специфическими белками (протеинкиназы, ионные каналы, фосфодиэстеразы) и их последующей модификацией вызывает развитие ответных реакций клеток. Помимо этого NO может изменять активность клеток независимым от цГМФ способом: редокс-дериваты NO опосредуют клеточные процессы, влияя на посттрансляционную модификацию или окисление внутриклеточных белков и/или липидов. Таким образом, NO поддерживает гомеостаз в ЖКТ, но при случившемся его нарушении может закреплять развитие патологического состояния. NO является важнейшим компонентом эндогенной системы защиты СОЖ, ДПК и тонкой кишки от повреждений, поддерживая целостность структуры и функции ЖКТ посредством увеличения слизеобразования, секреции бикарбоната, кровотока и снижения провоспалительной активации клеточного состава. Стимулирующий эффект NO на секрецию слизи является важным процессом, обеспечивающим восстановление СОЖ при развитии повреждений ее поверхности [24]. Источником NO – стимулятора образования слизи является nNOS, локализующаяся в эпителиальных клетках и нейронах [22, 25]. Репаративные процессы в СОЖ обеспечивает активность структурной NOS [26], в большей степени посредством активности eNOS. Последующая активация эндотелиальных и эпителиальных клеток ускоряет ангиогенез и заживление язв [27]. NO также обеспечивает протекторные функции посредством снижения уровня желудочной секреции, увеличения кровотока и щелочной секреции СОЖ [28]. Взаимодействие между НПВП, ПГ и NO Хорошо известно, что ПГ, синтезируемые циклооксигеназой 1-го типа (ЦОГ-1), и NO играют значимую роль в сохранении целостности СОЖ, совместно участвуя в механизмах ее защиты. Сохранение целостности и функциональности СОЖ достигается посредством совместной реализации обоими факторами одинаковых механизмов защиты: стимуляция образования слизи и секреции бикарбоната, обеспечение резистентности клеток к повреждающим факторам, ингибирование миграции лейкоцитов в СОЖ, снижение высвобождения воспалительных медиаторов. Супрессия одного из этих факторов обуcловливает компенсаторный подъем активности другого [29]. Механизмы повреждения СОЖ, вызванные применением НПВП, экзогенный NO в цитопротекции Повреждения СОЖ случаются, когда вредные факторы поступают или продуцируются в значительном количестве, превышая возможность противостояния им интактных механизмов защиты (синдром Золлингера–Эллисона), или же в случае нарушений защитных «барьеров». НПВП являются распространенным источником лекарственных повреждений СОЖ. НПВП способны одновременно подавлять активность обоих ферментов, отвечающих за продукцию ПГ: структурной ЦОГ-1 и индуцибельной ЦОГ-2, экспрессируемой тканями при развитии воспаления. Если подавление активности индуцибельной ЦОГ-2 приводит к ликвидации воспаления в разных тканях, вызванного продукцией ПГ как медиаторов воспалительной реакции, то подавление активности ЦОГ-1 обусловливает нарушение структурной и функциональной целостности СОЖ. Экспериментальные и эпидемиологические исследования указывают, что НПВП-индуцированные поражения СОЖ в значительной мере снижаются при применении экзогенного NO, т.е. этот фармакологический агент оказывает протективный эффект [10, 30] (рис. 1). В частности, в исследованиях с дизайном «случай–контроль» показано, что лечение нитратами значительно снижает риск развития кровотечений из верхних отделов ЖКТ у пациентов, принимавших НПВП или аспирин [31]. В другом исследовании использование аспирина или НПВП совместно с нитратами или ингибиторами протонной помпы (ИПП), или Н2-блокаторами существенно редуцировало риск кровотечений из верхних отделов ЖКТ, хотя эффект нитратов был достоверно слабее ИПП [32] (рис. 2). Специфический полиморфизм гена eNOS у некоторых субъектов, обусловливающий увеличение NO в плазме крови, ассоциируется со снижением риска кровотечений из верхних отделов ЖКТ [33]. Этот факт рассматривается авторами исследования как дополнительный эффект протективного влияния NO в механизмах предупреждения или усиления репарации повреждений СОЖ, вызываемых употреблением НПВП. НПВП, высвобождающие NO, роль в цитопротекции СОЖ В последнее время в классификации НПВП появился термин «CINODs», который объединяет химические соединения, являющиеся донаторами NO, способными ингибировать ЦОГ, – NO-НПВП, или COX-inhibiting nitric oxide donators (CINODs) [34]. Этот новый класс НПВП обеспечивает большую безопасность в отношении развития повреждений ЖКТ, чем существующие НПВП. Как указывалось выше, NO обладают способностью блокировать или компенсировать снижение кровотока, а также блокировать адгезию нейтрофилов к эндотелию сосудов, т.е. нежелательные эффекты НПВП на ЖКТ. Основываясь на этих свойствах, было предположено, что «сцепление» NO-высвобождающей части молекулы с действующим началом НПВП должно редуцировать токсичность этого класса соединений [22]. Вскоре в эксперименте на крысах было установлено, что NO-высвобождающие дериваты НПВП (NO-флурбипрофен, NO-кетопрофен, NO-диклофенак и NO-напроксен) оказывали менее выраженное повреждение СОЖ, чем их «родительские» соединения, не теряя при этом свою эффективность как НПВП [22, 35, 36]. При назначении напроксцинода (NO-напроксена) у здоровых людей эрозии желудка и ДПК развивались с меньшей частотой, чем в группе сравнения, участники которой получали напроксен. Напроксен у здоровых больных увеличивал проницаемость кишечной стенки, в то время как напроксцинод и плацебо, назначаемые также здоровым субъектам, не вызывали этого феномена [37]. Напроксцинод был не менее эффективен, чем напроксен, у больных остеоартритом, демонстрируя при этом лучший профиль безопасности [38]. В настоящее время известно более 20 новых NO-НПВП (аспирин, диклофенак, напроксен, флурбипрофен, кетопрофен, сулиндак, ибупрофен, индометацин и др.) [34, 39]. Исследованиями in vitro и клиническими исследованиями подтверждено, что использование «цинодов» открывает перспективы использования НПВП со значительно улучшенным профилем безопасности. НПВП, высвобождающие NO из СОЖ Одним из интересных соединений является амтолметин гуацил. Амтолметин гуацил синтезирован с помощью комбинированной методики химического синтеза в результате восстановления толметина аминокислотой (глицином) и гваяколом, при распаде образует два метаболита: MED-5 и толметин [40]. Амтолметин гуацил – НПВП, обладающий антипиретическим, аналгезирующим и противовоспалительным эффектом [41]. При анализе в контролируемых рандомизированных клинических исследованиях показано, что противовоспалительное и обезболивающее действие данного препарата как минимум такой же величины, что и у других НПВП, а именно у диклофенака, напроксена, пироксикама, толметина и других средств, при лечении остеоартрита, ревматоидного артрита [42–44]. В гистологических исследованиях на крысах было продемонстрировано, что этот лекарственный препарат в отличие от классических НПВП не вызывает геморрагических или некротических повреждений даже при внутрижелудочном введении в дозах, в 6 раз превышающих дозы, необходимые для уменьшения интенсивности кожного воспаления [45]. В исследовании с применением электронной микроскопии было показано, что у крыс микроциркуляция желудка не нарушается и признаки сужения кровеносных сосудов отсутствуют. Кроме того, не наблюдалось адгезии лейкоцитов к эндотелию сосудов. Этот результат очень важен, так как адгезия нейтрофилов с последующей окклюзией сосудов и высвобождением свободных радикалов является ключевым этапом в патогенезе НПВП-индуцированного поражения слизистой оболочки [46, 47]. Амтолметил гуацил в отличие от других НПВП, включающих аспирин, ибупрофен, индометацин, не вызывал повреждения желудочного трансэпителиального потенциала, что указывает на сохранение целостности слизисто-бикарбонатного барьера желудка [46]. Результаты метаанализа 18 клинических исследований переносимости амтолметин гуацила в сравнении с другими НПВП показывают, что частота случаев с нежелательными реакциями и ранним прекращением лечения значительно ниже у пациентов, которые принимали амтолметин гуацил, а не другие НПВП. Во всех исследованиях частота нежелательных явлений и случаев с ранним прекращением лечения оказалась ниже у пациентов, которые получали терапию амтолметин гуацилом, чем другими НПВП. Общее отношение шансов (ОШ) нежелательных реакций при использовании амтолметин гуацила в сравнении с другими лекарственными препаратами соответствовало 0,2 (95% доверительный интервал – ДИ от 0,1 до 0,3). Частота и тяжесть повреждений слизистой оболочки желудка при эндоскопическом исследовании оказались ниже после применения амтолметин гуацила по сравнению с другими НПВП: стандартное ОШ для тяжелых повреждений соответствовало 0,3% (95% ДИ от 0,1 до 0,7), а для легких и тяжелых повреждений – 0,1% (95% ДИ от 0,1 до 0,4) см. таблицу. Была продемонстрирована эквивалентность амтолметила гуацила и целекоксиба при лечении пациентов с ревматоидным артритом – со сравнимой безопасностью ЖКТ и терапевтической эффективностью [49]. Среди механизмов, которые лежат в основе этого свойства атолметина гуацила, можно выделить стимуляцию высвобождения желудочно-кишечных пептидов, в том числе кальцитонин-генсвязанного пептида, и активацию NOS с последующим высвобождением NO, защищающего стенку желудка от разрушения [40, 46, 50]. Принципиальным отличием амтолметина гуацила от «цинодов», являющихся донорами NO-группы, высвобождающими NO в системную циркуляцию, является уникальная способность препарата увеличивать продукцию NO преимущественно в ЖКТ. Образующиеся в результате гидролиза метаболиты атолметина гуацила (толметин и толметинглицинамид) не способны увеличивать продукцию NO в желудке. Можно предположить, что благоприятное влияние NO может компенсировать негативные эффекты подавления биосинтеза ПГ в слизистой оболочке. В некоторых экспериментальных моделях было продемонстрировано, что амтолметин гуацил действительно уменьшает поражение желудка, индуцированное этанолом, и этот защитный эффект исчезает при применении ингибиторов NOS. Имеющиеся клинические данные подтверждают эти экспериментальные результаты и свидетельствуют о том, что данный лекарственный препарат является альтернативой существующим НПВП, применяемым для лечения воспалительных заболеваний. Таким образом, селективное увеличение продукции NO в желудке, а не в других тканях является уникальным свойством амтолметина гуацила и имеет важное клиническое значение. Учитывая широту применения НПВП, актуальность проблемы НПВП-гастропатии, а также отсутствие NO-ассоциированных НПВП в России, амтолметин гуацил может стать альтернативой многим неселективным НПВП. Этот вывод подтвержден доказанным выраженным противовоспалительным, аналгезирующим и антипиретическим эффектом амтолметина гуацила в сочетании с уникальным селективным двойным механизмом защиты СОЖ, обеспечивающим хороший профиль безопасности.
×

About the authors

V. D Pasechnikov

References

  1. Wallace J.L. Prostaglandins, NSAIDs, and gastric mucosal protection: why doesn’t the stomach digest itself? Physiol Rev 2008; 88: 1547–65.
  2. Ham M, Kaunitz J.D. Gastroduodenal mucosal defense. Curr Opin Gastroenterol 2008; 24: 665–73.
  3. Tulassay Z, Herszenyi L. Gastric mucosal defense and cytoprotection. Best Practice & Research Clinical Gastroenterology 2010; 24: 99–108.
  4. Nayeb-Hashemi H, Kaunitz J.D. Gastroduodenal mucosal defense. Curr Opin Gastroenterol 2009; 25: 537–43.
  5. Al-Jiboury H, Kaunitz J.D. Gastroduodenal mucosal defense. Curr Opin Gastroenterol 2012; 28: 594–601.
  6. Palileo C, Kaunitz J.D. Gastrointestinal defense mechanisms. Curr Opin Gastroenterol 2011; 27: 543–8.
  7. Laine L, Takeuchi K, Tarnawski A. Gastric mucosal defense and cytoprotection: bench to bedside. Gastroenterology 2008; 135:41–60.
  8. Robert A, Nezamis J.E, Lancaster C et al. Cytoprotection by prostaglandins in rats. Prevention of gastric necrosis produced by alcohol, HCL, hypertonic NaCl and thermal injury. Gastroenterology 1978; 77: 433–43.
  9. Robert A, Nezamis J.E, Lancaster C et al. Mild irritants prevent gastric necrosis through adaptive ‘cytoprotection’ mediated prostaglandins. Am J Physiol 1983; 245: G113–21.
  10. Wallace J.L. Nitric oxide, aspirin - triggered lipoxins and NO-aspirin in gastric protection. Inflamm Allergy Drug Targets 2006; 5: 133–7.
  11. Konturek S.J, Konturek P.C, Brzozowski T. Prostaglandins and ulcer healing. J Physiol Pharmacol 2005; 56 (Suppl. 5): 5–31.
  12. Wallace J.L, Dicay M, Mc Knight W, Dudar G.K. Platelets accelerate gastric ulcer healing through presentation of vascular endothelial growth factor. Br J Pharmacol 2006; 148: 274–8.
  13. Tarnawski A, Stachura J, Ivey K.J et al. Ethanol - induced duodenal lesions in man. Protective effect of prostaglandin. Prostaglandins 1981; 21 (Suppl.): 147–53.
  14. Terano A, Ota S, Mach T et al. Prostaglandin protects against taurocholate - induced damage to rat gastric mucosal cellculture. Gastroenterology 1987; 92: 669–77.
  15. Halter F, Tarnawski A.S, Schmassmann A, Peskar B.M. Cyclooxygenase 2-implications on maintenance of gastric mucosal integrity and ulcer healing: controversial issues and perspectives. Gut 2001; 49: 443–53.
  16. Zanardo R.C, Brancaleone V, Distrutti E et al. Hydrogen sulfide is an endogenous modulator of leukocyte - mediated inflammation. FASEB J 2006; 20: 2118–20.
  17. Takeda M, Hayashi Y, Yamato M et al. Roles of endogenous prostaglandins and cyclooxygenase izoenzymes in mucosal defense of inflamed rat stomach. J Physiol Pharmacol 2004; 55: 193–205.
  18. Peskar B.M. Role of cyclooxygenase isoforms in gastric mucosal defense and ulcer healing. Inflamm Pharmacol 2005; 13: 15–26.
  19. Starodub O.T, Demitrack E.S, Baumgartner H.K, Montrose M.H. Disruption of the Cox-1 gene slows repair of microscopic lesions in the mouse gastric epithelium. Am J Physiol Cell Physiol 2008; 294: C223–32.
  20. Griffith O.W, Stuehr D.J. Nitric oxide synthases: properties and catalytic mechanism. Annu Rev Physiol 1995; 57: 707–36.
  21. Cho C.H. Current roles of nitric oxide in gastrointestinal disorders. J Physiol Paris 2001; 95: 253–6.
  22. Wallace J.L, Miller M.J.S. Nitric oxide in mucosal defense. A little goes a long - way. Gastroenterology 2000; 119: 512–20.
  23. Moncada S, Higgs A. The L-arginine - nitric oxide pathway. N Engl J Med 1993; 329: 2002–12.
  24. Furukawa O, Kume E, Sugamoto S et al. Effect of ecabet disodium, a novel locally - acting antiulcer drug, on epithelial restitution following injury by hypertonic NaCl in bullfrog stomach in vitro. Digestion 2000; 62: 116–25.
  25. Ichikawa T, Ishihara K, Kusakabe T et al. CGRP modulates mucin synthesis in surface mucus cells of rat gastric oxyntic mucosa. Am J Physiol 2000; 279: G82–9.
  26. Li Y, Wang W.P, Wang H.Y et al. Intragastric administration of heparin enhances gastric ulcer healing through a nitric oxide - dependent mechanism in rats. Eur J Pharmacol 2000; 399: 205–14.
  27. Ma L, Wallace J.L. Endothelial nitric oxide synthase modulates gastric ulcer healing in rats. Am J Physiol 2000; 279: G341–6.
  28. Chavez-Pina A.E, Tapia-Alvarez G.R, Reyes-Raminrez A, Navarrete A. Carbenoxolone gastroprotective mechanism: participation of nitric oxide/(c) GMP/K(ATP) pathway in ethanol - induced gastric injury in the rat. Fundam Clin Pharmacol 2011; 25: 717–22.
  29. Lanas A. Role of nitric oxide in the gastrointestinal tract. Arthritis Res Ther 2008; 10: 1–6.
  30. Mannick E.E, Bravo L.E, Zarama G et al. Inducible nitric oxide synthase, nitrotyrosine, and apoptosis in Helicobacter pylori gastritis: effects of antibiotics and antioxidants. Cancer Res 1996; 56: 3238–43.
  31. Lanas A, Bajador E, Serrano P et al. Nitrovasodilators, low - dose aspirin, other nonsteroidal antiinflammatory drugs, and the risk of upper gastrointestinal bleeding. N Engl J Med 2000; 343: 834–9.
  32. Lanas A, García-Rodríguez L.A, Arroyo M.T et al. Investigators of the Asociación Española de Gastroenterología (AEG): Effect of antisecretory drugs and nitrates on the risk of ulcer bleeding associated with nonsteroidal anti - inflammatory drugs, antiplatelet agents, and anticoagulants. Am J Gastroenterol 2007; 102: 507–15.
  33. Piazuelo E, Fuentes J, Garcfa-Gonzalez M.A et al. A case - control study of the association between polymorphisms of the endothelial nitric oxide synthase and glycoprotein IIIa genes and upper gastrointestinal bleeding in users of low - dose aspirin. Clin Ther 2008; 30: 121–30.
  34. Borhade N, Pathan A.R, Halder S et al. NO-NSAIDs. Part 3: Nitric Oxide-Releasing Prodrugs of Non - steroidal Anti - inflammatory Drugs. Chem Pharm Bull 2012; 60 (4): 465–81.
  35. Reuter B.K, Cirino G, Wallace J.L: Markedly reduced intestinal toxicity of a diclofenac derivative. Life Sci 1994; 55: PL1–PL8.
  36. Cuzzolin L, Conforti A, Adami A et al. Anti - inflammatory potency and gastrointestinal toxicity of a new compound, NO-naproxen. Pharmacol Res 1995; 31: 61–5.
  37. Hawkey C.J, Jones J.I, Atherton C.T et al. Gastrointestinal safety of AZD3582, a cyclooxygenase inhibiting nitric oxide donator: proof of concept study in humans. Gut 2003; 52: 1537–42.
  38. Lohmander L.S, Mc Keith D, Svensson O et al. A randomised, placebo controlled, comparative trial of the gastrointestinal safety and efficacy of AZD3582 versus naproxen in osteoarthritis. Ann Rheum Dis 2005; 64: 449-56.
  39. Qandil A.M. Prodrugs of Nonsteroidal Anti - Inflammatory Drugs (NSAIDs), More Than Meets the Eye: A Critical Review Int. J Mol Sci 2012; 13: 17244–74.
  40. Li Y-H, Li J, Huang Y et al. Gastroprotective effect and mechanism of amtolmetin guacyl in mice. World J Gastroenterol 2004; 10 (24): 3616–20.
  41. Bianchi P.G, Montrone F, Lazzaroni M et al. Clinical and gastroscopic evaluation of amtolmetin guacylbversus diclofenac in patients with rheumatoid arthritis. Ital J Gastroenterol Hepatol 1999; 31: 378–85.
  42. Petazzi I, Corberi G, Bonollo L et al. Clinical study of the therapeutic activity and tolerability of artromed in comparison with piroxicam in rheumatoid arthritic patients. Drugs Exp Clin Res 1990; 16: 31–7.
  43. Petazzi I, Corberi G, Bonollo L et al. Evaluation of the time course of the algic - inflammatory symptoms in patients with osteoarthritic afflictions during and after treatment with artromed or diclofenac. Drugs Exp Clin Res 1990; 16: 7–12.
  44. Petazzi I, Corberi G, Bonollo L et al. Clinical study of the therapeutic activity and tolerability of artromed in comparison with naproxen in patients with osteoarthritis in different localizations. Drugs Exp Clin Res 1990; 16: 25–30.
  45. Bertaccini G, Coruzzi G. Amtolmetin guacyl: a new antiinflammatory drug devoid of gastrolesive properties. Naunyn–Schmiedeberg’s Arch Pharmacol 1998; 358 (Suppl. 1): R366.
  46. Riezzo G, Chiloiro M, Montanaro S. Protective effects of amtometin guacyl verus placebo diclofenac and mioprostol in healthy volunteers evaluated as gastric electrical activity in alcohol - induced stomach damage. Dig Dis Sci 2001; 46: 1797–804.
  47. Wallace J.L. Non - steroidal antiinflammatory drug gastropathy and cytoprotection: pathogenesis and mechanisms reexamined. Scand J Gastroenterol 1992; 27 (Suppl. 192): 3–8.
  48. Marcolongo R, Frediani B, Biasi G et al. A Meta-Analysis of the Tolerability of Amtolmetin Guacil, a Novel, Effective Nonsteroidal Anti-Inflammatory Drug, Compared with Established Agents. Clin Drug Invest 1999; 17 (2): 89–96.
  49. Jajic´Z, Malaise M, Nekam K et al. Gastrointestinal safety of amtolmetin guacyl in comparison with celecoxib in patients with rheumatoid arthritis. Clin Experim Rheumatol 2005; 23: 809–18.
  50. Anon. Amtolmetin guacyl product profile. Adis International 1998.

Supplementary files

Supplementary Files
Action
1. JATS XML

Copyright (c) 2013 Consilium Medicum

Creative Commons License
This work is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License.

СМИ зарегистрировано Федеральной службой по надзору в сфере связи, информационных технологий и массовых коммуникаций (Роскомнадзор).
Регистрационный номер и дата принятия решения о регистрации СМИ: серия ПИ № ФС77-63969 от 18.12.2015. 
СМИ зарегистрировано Федеральной службой по надзору в сфере связи, информационных технологий и массовых коммуникаций (Роскомнадзор).
Регистрационный номер и дата принятия решения о регистрации СМИ: серия
ЭЛ № ФС 77 - 69134 от  24.03.2017.

This website uses cookies

You consent to our cookies if you continue to use our website.

About Cookies